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Abstract
Abstract

*This paper presents a simple way of classifying higher order differential equa-
tions based on the requirements of the Painlevé property, i.e., the presence of
no movable critical points. The fundamental building blocks for such equations
may be generated by strongly self-dominant differential equations, of the type
(34 x)Mu=6/3xM)[u{M-n+P)/P] in which m and n are positive integers.and p’is a negative
integer.~Such differential equations having both a constant degree d and a constant
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value of the difference n-m form a Painlevé chain; however, only three of the
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many possible Painlevé chains can have the Painlevé property. Among the three
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Painleve chains which can have the Painlevé property, one contains the Burgers’
equation; another contains the dominant terms of the first Painlevé transcendent,

the isospectrai Korteweg-de Vries equation, and the isospectral Boussinesq equation;
: and the third ccntains the dominant terms of the second Painleve transcendent
h and the isospectral modified (cubic) Korteweg-de Vries equation. Differential
: equations of the same order and having the same value of the quotient (n-m)/(d-1)
.- can be mixed to generate a new hybrid differential equation. In such cases a hybrid
can have the Painlevé property even if only one of its components has the Painievé
property. Such hybridization processes can be used to generate the various
fifth-order evolution equations of interest, namely the Caudrey-Dodd-Gibbon, -,
Kuperschmidt, and Morris equati%
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1. INTRODUCTION

.

T a T a

in recent years theoretical physicists have been very interested in a certain
class of non-linear partial differential equations known as evolution equations.1r2
This interest has arisen from the realization that these equations possess a special
type of elementary solution which takes the form of localized disturbances which

O

act somewhat like particles and are therefore known as solitons.

Solution of these evolution equations involves the so-called inverse scattering
transform. 12,3 In this connection it has been noted?5:6 that there is a relation
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between non-linear partial differential equations solvable by an inverse scattering

critical points; such ODE’s are said to have the Painlevé property. An algorithm

F transform and non-linear ordinary differential equations (ODE) without movable
-

has been developedsr6 for the determination whether a given system of differential
equations has the Painleve property.

In applying the algorithm to test systems of differential equations for the
Painlevé property, the question naturally arises to what extent useful information
can be obtained on the properties of a given differential equation by simple inspec-
tion of the equation without extensive calculation. This paper explores this question
and provides a simple approach for identifying higher order differential eguations
possessing necessary conditions to have the Painlevé property. More extensive
tests are then required in order to determine whether these necessary conditions
are sufficient for specific equations to have the Painlevé property.
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tfj Il. DOMINANCE CLASSES AND FAMILIES
In this work we are interested in evolution equations of the form
Up + F(X,U,Uqy)ee0 Uny)=0 )
in which
u=3s anduje=@lu  j0,T,.n @

In these equations u may be regarded as an amplitude, x as a distance, and t as
time. Of particular interest are time-independent solutions where uy=0 and there-
fore

f(X,U,Uqyseeerinx)=0 3

Let us adjust the distance scale x so that x=x* is a critical point. The dominant

behavior of solutions of equation 3 in the neighborhood of the critical point x=x*
can be expressed as the following series:

u=a(x - x*)P as x > x* (4)

Substitution of equation 4 into equation 3 shows that for certain values of the

exponent p, two or more terms may balance (possibly depending upon a) and the
rest can be ignored as x>x*. For each choice of p the terms which can balance

are cailled the dominant terms. Modification of equation 3 by deletion of all non-

dominant terms in general leads to a new simpler equation called the dominant

truncation of equation 3. All equations giving the same dominant truncation may
be considered as forming a dominance class. All dominance classes which have

. identical dominant truncations except for multiplicative constants may be regarded
? as forming a dominance family. A self-dominant equation is one in which all of

its terms are dominant and is therefore identical to its dominant truncation.
Painlevé”’ has identified 50 canonical forms of second order differential equa-
tions which lack movable critical points and which therefore are related to non-
linear differential equations solvable by inverse scattering transforms. The methods
and ideas to be used in this paper can first be illustrated with the simplest irreduc-
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> ible Painleve equation, namely

Uy = 6u2 + x (5)

T

Expressing u by equation 4 gives
| ap(p-N(x - x*)P-2 = 6a2(x - x*)2P + x 6)

Balancing the (x - x*)P-Z term on the left with the (x - x*)2P term on the right
givesp -2 = 2p or p = -2. The x term on the right of equations 5 and 6 is not involved
l in the balancing. Such terms are called recessive terms and are those dropped
from the differential equation to form its dominant truncation. Thus the dominant
truncation of equation 5 is

] Uxx = 6u2 @)

Equation 7 is also the Painlevé canonical equation Il which is solvable by elliptic
functions.’

The next simplest irreducible Painleve equation is

Ugx = 2u3 + xu + b @

l.‘ s, v '. '~ ,l

Analogously expressing u in equation 8 by equation 4 gives

ap(p-1)x - x*)P-2 = 2a3(x - x*)3P + ax(x - x*)P + b 9)

Ty e Ty VY Y T Emm T

Balancing the (x - x*)P~2 term on the left with the (x -x*)3P term on the right
givesp - 2=3por p=-1. The (x - x*)P term on the right of equation 9 cannot

be involved in the balancing sincep-2# p. This term is therefore a recessive

term as is the constant term b of equation 8. Therefore the dominant truncation
of equation 8 is

Uyx = 2u3 (10)

A simple type of second order differential equation reducible to a first order differ-

F
-

ential equation of Riccati type is the Painlevé canonical equation V, namely

L e et eyt m et e ? et ta et e teagm e a T v e . o AR
L et ot a et e e T e e T e e Wt ) e . P R I S -
S e e e AT T e e e e e 2 RO s .




‘S, LS ST T VAT HW T T

’

. o Y v y _ e
i, R e i Sl W S B anfure e Ve - b N A A B0l S0 N - 2 e B ) e 2]

Uxx = -2UlUy + buy + bu : a1

Methods analogous to those used above indicate that p = -1 for equation 11 and
that its dominant truncation i$

Uyx = =2UUy ' (12)

Thus equations 8 and 11 lead to the same value for the exponent p when expanded
in the neighborhood of a critical point by using equation 4 but lead to dominant

truncations having very different forms. Thus equation 8 and 11 are in different
dominant families.

Second order differential equations without movable critical points are also
possible which have dominant truncations which are linear combinations of equations
of the types 10 and 12. This phenomenon, which can be called hybridization, is
possible because equations 10 and 12 lead to the same value of the exponent p

when equation 4 is substituted into them. The simplest example of hybridization

in the Painlevé canonical equations7 occurs in Painleve equation VI, namely

Uyx = -3uty - u3 + buy - bu2 (13

The dominant truncation of equation 13 is

Uyx = -3uuy - u3 14
This is a linear combination of equations 10 and 12 with appropriate adjustments

of the multiplicative constants,

Another phenomenon is observed in the third and higher irreducible Painlevée

equations.7 Thus the third irreducible Painlevé equation (canonical form’  XIN)
is

Uyx = (U 2/u) + bu3 + cu? + d + (e/w) (15)
Substituting equation 4 into equation 10 gives

ap(p-(x - x*)P-2 = ap2(x - x*P-2 + ba3(x - x*)3P + ca(x - x*)2P
+d+ (e/a)x - x*)°P (16)
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The ap2(x - x*)P-2 and ba3(x - x*)3P terms on the right of equation 16 are both
dominant terms but only the ba3(x - x*)3P term can be used to determine the
exponent p to be -1. The ba3(x - x*)3P term may therefore be considered to be
an active dominant term. Similarly ap2(x - x*P-2 may be regarded as a passive
dominant term. Self-dominant equations having only active dominant terms may

be called strongly self-dominant equations. Since passive dominant terms are

not found in the evolution equations of interest, only strongly self-dominant equa-
tions will be considered in this paper. These will be seen to relate closely to the

evolution equations.
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Il. PAINLEVE ANALYSIS OF STRONGLY SELF-DOMINANT EQUATIONS

We will now consider the general features of the so-called Painlevé analysis
used to determine whether a given strongly self-dominant differential equation
has the Painlevé property. Such equations can be expressed as polynomials of
the following type:

n-1 qj
T Ujx
i=0

Unx = B(X,U,Uqx,eeerli(n-1)x) = ] Ci (17
i
in which n is thus the order of the differential equation. Let us now assign to
equation 17 the following integers:
n = order of the equation (order of the derivative uny on the left-hand side
of equation 17 which is the highest order derivative in the equation).

n-1
mj= § jaj (the weighted sums of the derivatives in the terms on the right-
0 " hand side of equation 17)
n-1
d; = 'ZO qj (degrees of the polynomial terms on the right-hand’side of equation
I= 17)

In general m; # my and d; # dx. However, initially we shall consider homogeneous
equations (17) in which m; = my and dj = d¢ for all values of i and k. For such
a homogeneous equation we can assign unique values of m and d. Let us call m
and d the co-order and the degree, respectively, of the equation.

Let us now apply Painlevé analysis to equation 17. Express u as the power
series in equation 4. Determine the exponent p which balances the terms. By
taking appropriate derivatives of equation 4 the following relationship can be

seen to hold:

—m-
P="g-1

3

(18)

If p is not an integer, then equation 17 has a movable algebraic branch point
implying non-Painlevé behavior., We are therefore interested in self-dominant
systems of the type represented by equation 17 for which p as determined by equa-
tion 18 is a negative integer.

If p (equation 18) is a negative integer, then equation 4 may represent the

.....................
-----
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first term in a Laurent series8 valid in a deleted neighborhood of a movable pole.
In this case a solution of equation 17 is of the following type:

o
u=(x-x9P ¥ aplx-x*k (19)
k=0
where x - x* # 0. In this case the position x* of the singular value of x corresponds
to one of the n integration constants. If n-1 of the coefficients ay are also arbit-
rary, the n integration constants of equation 17 are then accounted for and equation
19 represents the solution of equation 17 in the deleted neighborhood of the singu-
larity x*. The powers of x at which these arbitrary constants enter are called
the resonances and will be designated as r1q, r, ..., rn so that ri<ry for i<k.
In order to find the resonances the following equation for u is substituted into
equation 17:

u = al(x- x*)P + b(x - x*)P*r (20)

The coefficient a is obtained by equating the coefficients of the (x - x*)P™N terms
which are the leading terms in the neighborhood of x*. For a homogeneous equation
17 the coefficient a is uniquely determined. After determining a then the coeffic-
ients of the next higher powers (x - x*)P*'*N are equated in order to determine
the resonances. In this way the resulting equations for the resonances to leading
order in b reduce to

Qir)b(x - x*)9 =0 g> ptr-n 2mn

in which Q(r) is a polynomial in r of degree n. The roots of Q(r) determine the
resonances since Q(r) = 0 corresponds to the "indicial equation” used to solve a
linear ordinary differential equation near a regular singular point.?

Let us now consider some features of this indicial polynomial Q(r). Because
of the rules for differentiation, the left-hand side of equation 17 will generate
the n-th degree polynomial L(r) of the following type:

L= +pXr+p-T..(r+p-n) 22)

Since p is a negative integer, L(r) is not divisible by r+1 and all of its roots are
real positive integers. However, the polynomial Q(r) must be divisible by r+1

[l A A}
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reflecting the arbitrariness of the singularity x=x* corresponding to one of the
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n integration constants. This leads to an automatic root of -1 for Q(r). Therefore
substitution of equation 20 into the right-hand side of equation 17 must generate
a polynomial R(r) so that the difference L(r) - R(r) is divisible by r+1 and is
factorable into linear factors so that all of its roots are real integers. However,
the degree of R(r) is m<n so that the terms in L(R) of the type hkr"‘k in which
n-k>m will be the same as the corresponding terms of the indicial polynomial
Qlr).

Arguments based on the relationships between the coefficients of the highest
degree terms of polynomials and the sums of powers of their roots 10 indicate that
E the degree of R(r), which corresponds to the co-order m of the original differential

equation (17), must be high enough so that the difference L(r) - R(r) with L(r)
! defined by equation 22 becomes divisible by r+1 while remaining factorable into
linear factors even though L(r) itself is not divisible by r+1. Otherwise the
corresponding differential equation (17) will not have the Painlevé property. For
this reason only differential equations (17) having p = -1 or p = -2 can be candidates
for equations having the Painleve property. .

The next step is to find the roots of Q(r). If all of the roots of Q(r) other than
the automatic -1 roots are real integers with at least one root greater than -1,
then the system can be free from algebraic branch points. The corresponding
homogeneous differential equation (17) is a possible candidate for a system having

the Painleve property. The complete Painlevé analysis requires additional steps

involving determination of the integration constants.” These additional steps

S are sufficiently more complicated and tedious so that they cannot readily be applied

to the diverse variety of systems considered in this paper. We shall therefore

E limit the discussion in this paper to the identification of the types of differential
P equations (17) which can lead to the integral resonances required for the Painlevé -——-'
property. o

..............
''''''''''''''''''''''''''''''''''
----------
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V. RESULTS

Table 1 lists all of the possible types of strongly self-dominant homogeneous
differential equations of order < 4 which have the negative integral balancing
exponents p (equation 18) required for the Painlevé property. Of these sixteen
equation types, nine are shown by the methods outlined above to have the real
integral resonances required for the Painlevé property. These nine equations
are all members of the three Painlevé chains described in Table 2. In this context
a Painlevé chain consists of a chain of differential equations of the following

type:

Unx = <-§—>><m [ulm=n+p)/p]; m = 1,2,... (23)
The Painlevé chains may be characterized by the fraction (n-m)/(d-1) which by
equation 18 is the negative of the exponent p. The three Painleve chains depicted
in Table 2 are the only possible Painlevé chains for whichn-m< 2 and therefore
for reasons outlined in the previous section are the only possible Painleve chains
giving the integral resonances required for the Painlevé property. Note also that
each member of a Painlevée chain has all of the resonances of the previous member
plus one additional resonance. In ascending a Painlevé chain to higher orders
through the successive differentiations implied by equation 23, points may be
reached where the indicial polynomial Q(r) has a multiple root (i.e., order 4 for
the 2/2 chain and order 5 for the 2/1 chain) and a point is reached where the right-
hand side of the differential equation splits into more than one term. The algorithm
for determining the resonances is independent of the parameter k (see Table 1
since products of the type kad-1 (a from equation 4 for u) are constant. Hov.ever,
in equations having multiple terms on the right-hand side, the positions of the
resonances depend upon the ratios of the coefficients of these terms. However,
the process of obtaining the members of a Painlevé chain through equation 23
and the implied successive differentiations suggest ratios between the coeffic-
ients of the terms on the right-hand side as given in Table 1 and 2 which may
have special significance.

Table 2 also indicates the relationships of the Painlevé chains to the evolution
equations. Each of the three Painlevé chains contains at least one of the evolution
equations. The 2/7 chain is the most important one in this connection since it
contains both the Korteweg-de Vries and Boussinesq equations. The higher order
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equations in the three Painlevé chains of Table 3 are interesting candidates for

detailed future study, since some of them are possibilities for new equations solvable
by the inverse scattering transform or related methods.

Note from Tables 1 and 2 that the 2/2 and 1/1 chains have the same exponent
p, namely -1. The homogeneous equations of a given order in these chains can
be mixed to give a Hybrid equation which is still self-dominant. Similar mixing
of homogeneous differential equations of a given order and fractions 4/2 and 2/1
(i.e., p = -2) can also give hybrid seif-dominant equations; this latter type of mixing
is important in the study of fifth-order evolution equations as discussed below.
Note that mixing a 4/2 equation with a 2/1 equation of the same order can give
a hybrid equation with the integral resonances required for the Painlevé property
even though a pure 4/2 equation cannot have the Painlevé property since it has
complex resonances rather than integral resonances.

Let us consider hybridization of the third-order equations u3y = k(ux2 + uupy)
(fraction 1/1) and u3y = k’u2ux (fraction 2/2); the latter is the dominant truncation
of the modified (cubic) KdV equation. If the 1/1 coefficient ratio of the u,;: and
uu)y terms is preserved, the resulting hybrid can be expressed in the following

form:

U3y = u,% + Uugy + huzux (24)

Balancing the (x - x*)"4 terms according the Painleve procedure gives the following
quadratic equation for a:

2 - -3—— - é =
a ah R 0 (25)
Therefore
T \|
2 =5, t 3h 9 + 24h (26)

Thus for any value of h>-3/8, a has two values indicating two solution branches.
Such multiple solution branches are a characteristic of hybrid equations.

Table 3 illustrates the Painleveé analysis for the hybrid third-order differential
equation 24 using as examples several values of h leading to rational values of
a. In three of the four cases one of the two solution branches has a "good" set
of resonances for the Painleveé property (resonances at -1 and two other distinct
integers including at least one positive integer) > -1 and the other branch has
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a "flaw" in its set of resonances (non-integral resonance or a double root). Note,

however, that regardless of the values of h and a, two of the three resonances
in equation 24 appear at -1 and +3 which are the two resonances possessed by
both components of the hybrid, namely u3, = k(u,% + Uuuy).

Table 4 summarizes the Painlevé analysis for the three homogeneous fifth-order
differential equations which are members of the three Painlevé chains in Table
2 as well as three hybrid fifth-order differential equations which have been studied
as evolution equations. All three of the hybrid systems are mixtures of the 2/1
quadratic and 4/2 cubic fifth-order differential equations. The following points
about these fifth-order hybrid differential equations are of interest:

(1) In contrast to the third order differential equations of Table 3 the ratios between
the coefficients of the uyupy and uu3y terms of the 2/1 components (designated
as rq2/ro3) are different for the hybrid systems than for the pure homogeneous
fifth-order 2/7 equation generated by the successive differentiations implied by
equation 23. Thus for the homogeneous systems r42/rg3 is 3 whereas for the hybrid
systems rq2/rg3 is 1, 5/2, and 2 for the Caudrey-Dodd-Gibbon, the Kuperschmidt,
and the higher order Korteweg-de Vries equations, respectively. The hybrid systems
may therefore be viewed as being generated from the pure 2/1 system by perturbing
the ratio rq2/rqg3 from that generated for the pure system by differentiation (namely
3) and then mixing in enough of the 4/2 equation (i.e., ugy = k'u2uy) to restore
the integral resonances required for the Painlevé property.

(2) For reasons noted above the fifth-order 2/1 + 4/2 hybrid equations have two
solution branches arising from the two roots of a quadratic equation analogous
to equation 25. In all three cases one solution branch has all integers greater
than the mandatory -1 resonance whereas the other solution branch has one reson-
ance below -1 in addition to three distinct integral resonances greater than -1.
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. V. SUMMARY

p This paper demonstrates a simple way of classifying higher order differential
- equations based on the requirements of the Painlevé property related to the solubil-

ity of the equation by inverse scattering transform methods. 1:2:3  As expected
the known evolution equations such as the Korteweg-de Vries, Burger, Boussinesq,
. and Caudrey-Dodd-Gibbon equations occupy prominent positions in this classification
g scheme. This classification scheme also identifies new potential candidates for
higher order differential equations with the Painlevé property and possibly soluble
5 by inverse scattering transform methods. A major objective of this paper is to

' stimulate further work which hopefully will relate the ideas in this paper to such
‘ important aspects in the study of evolution equations as the generation of Lax
» pairs,‘”r'12 conservation laws,‘]r2 Bdcklund t:ransformations,“z'13‘1‘|4r15r16 recursion

relations,6'12 Schwarzian derivatives,12r14r15r16r17 and prolongation

structures 18:19 as well as details of the inverse scattering transform procedure."rz'3
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